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Abstract— Programming manipulation behaviors can become
increasingly difficult with a growing number and complexity of
manipulation tasks, particularly in a dynamic and unstructured
environment. Recent progress in unsupervised skill discovery
algorithms has shown great promise in learning an extensive
collection of behaviors without extrinsic supervision. On the
other hand, safety is one of the most critical factors for real-
world robot applications. As skill discovery methods typically
encourage exploratory and dynamic behaviors, it can often
be the case that a large portion of learned skills remain too
dangerous and unsafe. In this paper, we introduce the novel
problem of Safety-Aware Skill Discovery, which aims to learn,
in a task-agnostic fashion, a repertoire of reusable skills that
are inherently safe to be composed for solving downstream
tasks. We present a computationally tractable algorithm that
learns a latent-conditioned skill policy that maximizes intrinsic
rewards regularized with a safety-critic that can model any
user-defined safety constraints. Using the pretrained safe skill
repertoire, hierarchical reinforcement learning can solve multi-
ple downstream tasks without the need for explicit consideration
of safety during training and testing. We evaluate our algorithm
on a collection of force-controlled robotic manipulation tasks in
simulation and show promising downstream task performance
while satisfying safety constraints.

I. INTRODUCTION

Safety is a mandatory requirement in the task deployment
of real-world robot manipulation systems. Recall that the
central behaviors constituting robot manipulation tasks are
about changing the state of the surrounding environment by
explicitly engaging in a series of physical contact interac-
tions. While a highly performant robot manipulator must
be able to actively exploit and sequence diverse contact
behaviors to solve the given task, physical contact can raise
serious safety issues, e.g., irrecoverable damages to the
robot or the surrounding environment. Moreover, various
hardware constraints, including self-collisions and actuation
limits, should be strictly satisfied, and other task-specific
requirements, e.g., an object should not fall down from the
table (see Figure 1a), can also relate to safety issues.

The primary objective of this paper is to develop an
intrinsically safe and skilled robot manipulation system that
can efficiently solve a collection of downstream tasks subject
to any given set of safety constraints. We aim to achieve this
goal by drawing upon the seemingly unrelated ideas from
unsupervised skill discovery and safe reinforcement learning.
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(a) Skills discovered without safety constraints

(b) Safety-aware unsupervised skill discovery

Fig. 1: Snapshots of force-controlled bimanual manipula-
tion behaviors of AMBIDEX discovered from scratch. Red
colored table indicates that the agent is in unsafe state.
Violated safety constraints are listed in each frames. Each
row represents a single skill.

A. Related Works

Skill discovery algorithms, also referred to as unsupervised
reinforcement learning [1], aim at learning behaviors without
relying on extrinsic task rewards. Based only on intrinsic
motivations, skill discovery algorithms have shown to be able
to learn sufficiently diverse and useful primitive behaviors
which can also be leveraged to solve various downstream
tasks using hierarchical reinforcement learning. One of the
most widely used objective in skill discovery include mu-
tual information between a latent skill variable and some
state marginals so as to produce diverse and discriminative
behaviors in the state space [2]–[6].

As skill discovery methods typically encourage ex-
ploratory and dynamic behaviors owing to the nature of
intrinsic motivation, it can often be the case that a large
portion of discovered skills turns out to be too dangerous, and
hence cannot be reused in solving safety-critical downstream



tasks. To the best of our knowledge, there are few studies
that formally investigate safety issues in the context of
unsupervised skill discovery.

There are various approaches to designing a task-specific
controller that addresses safety concerns. While designing
simple heuristics can be sufficient in some cases, these
ad-hoc treatments may not adequately address all risks or
may restrict task performance unexpectedly. Constrained
optimal control methods [7]–[10] offer various formal ways
to synthesize safety-guaranteed controllers. These methods
typically assume that the system dynamics are of a particular
form and known, and safety is defined by deterministic
constraints on the executed trajectory. On the other hand,
safe reinforcement learning (RL) methods offer model-free
approaches to ensuring probabilistic safety guarantees under
unknown, stochastic dynamics [11], [12]. Some of these
methods constrain conditional value at risk or probabilistic
bounds of rewards and constraints in a stochastic environ-
ment [13]–[16], while others focus on constrained Markov
Decision Process (CMDP) [17], where the expected sum of
(constraint) costs is constrained while maximizing that of
rewards. Among them, the Safety-critic-based methods [18]–
[20], which we adopt in our work, aim to learn the critic
function that estimates the probability of failure in the future
events and use it to constrain the task-specific policy.

The concept of addressing safety in a task-agnostic manner
is particularly attractive for multi-task applications, where
the same set of unsafe behaviors may occur across multiple
tasks. For example, control barrier function (CBF)-based
approaches [21]–[23] can be applied to any type of task-
specific controllers by designing a safety filter that projects
the actions from the task-specific controllers. However, the
validity of CBF-based safety filter design may depend on the
structure of the system dynamics or become computationally
intractable for complex, high-dimensional systems [23]. In
[18], a safety-critic function is pretrained in some predefined
set of tasks, and resued in learning new tasks at test time. In
our work, we don’t require the user to manually specify the
task set to learn safety. Also, we maintain safety in the form
of composable low-level skill policies, rather than the safety-
critic function. While [24] also aims to learn safe exploratory
policies whose safety is implied by matching a state marginal
to a particular state distribution, the use of learned policies
has not been explored for solving downstream tasks under
the hierarchical reinforcement learning framework.

B. Contribution

The contribution of this paper is twofold. First, we de-
fine the novel problem of Safety-Aware Skill Discovery
(SASD), which aims at learning, in a task-agnostic fashion,
a repertoire of reusable skills that is inherently safe to be
composed for solving downstream tasks. Second, we propose
an algorithm for SASD that learns a latent-conditioned skill-
policy maximizing mutual information based intrinsic re-
ward, regularized with safety-critic that can model any user-
defined safety constraints. Using the pretrained repertoire of
safe skills, one can solve various downstream tasks without

the need of additional safety considerations. We evaluate our
algorithm on a collection of force-controlled robotic manip-
ulation tasks in simulation and show promising downstream
task performance while satisfying safety constraints.

The rest of the paper is organized as follows: Section
II gives preliminary elements of safe RL and unsupervised
skill discovery. Then, Section III introduces the problem of
SASD and a concrete algorithm to solve the problem. Finally,
Section IV details a series of comparative quantitative and
qualitative results in the domain of force-controlled object
manipulation.

II. PRELIMINARIES

In this section, we introduce two key elements that un-
derlie the problem of SASD. We first define the framework
of safety-aware Markov Decision Process (MDP) and ac-
companied safety-critic concept proposed in [18]. Then, we
briefly overview unsupervised skill discovery methods that
maximize information theoretic objectives.

A. Safety-aware Markov Decision Process

We assume an environment with fully-observable state
st ∈ S , action at ∈ A, state transition probabil-
ity p(st+1|st, at), and a scalar reward function rt =
r(st, at, st+1) which defines a Markov Decision Process
(MDP) represented as a tuple M = ⟨S,A, p, r⟩. As an
incremental construction, a safety-aware MDP is defined as,

T = ⟨S,A, p, r, I⟩ (1)

where a safety-incident binary indicator I(s) indicates if a
given state s is unsafe or not; Sunsafe = {s | I(s) = 1}
defines a set of unsafe states.

The goal in safety-aware MDP is to find an optimal
stochastic policy that maximizes the expected cumulative
reward with a probability of safety constraint violation
bounded by ϵ:

max
π

J(π) = Epπ(τ)

[
T∑
t=0

r(st, at, st+1)

]
s.t. Epπ(s) [I(s)] < ϵ, (2)

where pπ(s) and pπ(τ) respectively denote the state marginal
and state-action trajectory distribution induced by the policy
π. The safety constraint above can be approximated by the
safety-critic Q function [18] which is defined as

Qπsafe(st, at) = I(st)+

(1− I(st))E st+1∼p(·|st,at)
st′∼ρπ for t′>t+1

[
T∑

t′=t+1

γt
′−t

safe I(st′)

]
,

(3)

where γsafe is a discounting factor. This cumulative dis-
counted probability of failure satisfies the following Bellman
equation:

Qπsafe(s, a) = I(s)+(1−I(s))Es′∼p(·|s,a)
a′∼π(·|s′)

[γsafeQ
π
safe(s

′, a′)] .



As in standard Q-learning, it is parameterized by a neural
network (with parameter ψ) as Qπsafe,ψ and obtained by
minimizing the following mean squared Bellman error:

Jsafe(ψ) = E(s,a,s′,a′)∼pπ

[(
Qπsafe,ψ(s, a)−(

I(s) + (1− I(s))γsafeQ̄
π
safe,ψ(s

′, a′)
) )2]

, (4)

where Q̄πsafe,ψ corresponds to the delayed target network.

B. Unsupervised Skill Discovery

Unsupervised skill discovery allows the agent to learn
diverse behaviors without extrinsic rewards. In the context of
mutual information maximizing skill discovery approaches,
skill is represented as a latent-conditioned policy π(a|s, z)
where a latent variable z ∈ Z is normally drawn from a fixed
prior distribution p(z). Executing skill policy π(a|s, z) on
the initial state sampled from a fixed distribution s0 ∼ p(s0)
induces a skill-conditional trajectory distribution pπ(τ |z).

Maximizing the mutual information between the latent
variable z and some marginal over the state trajectory
has proven to encourage exploration and produce diverse
behaviors. To explain, let us consider the maximization of
mutual information objective MI(s, s′; z) between the state
transition (s, s′) and skill z, which can be approximated with
a variational lower bound [2], [3], [5] as follows:

MI(z; s, s′) = H(z)−H(z|s, s′)
= Ep(z)Epπ(s,s′|z)

[
log p(z|s, s′)− log p(z)

]
≥ Ep(z)Epπ(s,s′|z)

[
log q(z|s, s′)

]
+ (const),

(5)

where H(·) denotes the entropy and q(z|s, s′), so-called skill
discriminator, represents the variational approximation for
the true posterior p(z|s, s′). Parameterizing the skill dis-
criminator with a neural network qη , typical skill discovery
algorithms proceed by alternating between updating the qη
so as to maximize the likelihood of on-policy skill samples,
i.e.,

max
η

Jdisc(η) = Ep(z)Epπ(s,s′|z)[log qη(z|s, s
′)], (6)

and optimizing the skill policy, parametrized by a neural
network πθ, using standard RL algorithm,

max
θ
Jpolicy(θ) = Ep(z)Epπθ

(τ |z)

[ T∑
t=0

r(st, st+1, z)

]
, (7)

to maximize the intrinsic reward rt given as

r(s, s′, z) = log qη(z|s, s′). (8)

III. SAFE SKILL DISCOVERY

In this section, we introduce the problem of safety-aware
skill discovery (SASD), which aims to discover diverse task-
agnostic skills that satisfies user-defined safety constraints.
We also propose an algorithm to solve SASD, using safety-
critic to model and regulate the probability of failure over
the future state visits induced by the skill policy, while
maximizing mutual information based intrinsic reward.

Fig. 2: An overview of our safe skill discovery framework
that consists of two stages: pre-training safe skill policies
and learning tasks based on the skills. In the first stage, the
skill policy π is optimized to minimize the failure probability
that is estimated by the safety-critic, while maximizing the
skill discovery reward given by the skill encoder. The task
policy is then optimized to maximize the task reward using
the skill policy as a low-level controller. While the dotted
lines denote the computation of the policy losses, the solid
lines denote the actual control diagram of the policies.

A. Problem Definition

Our goal is to solve a set of downstream tasks {Ti}Ni=1,
each of which can be represented as a safety-aware MDP
with different task rewards ri, but with shared safety con-
straint imposed by a binary indicator I:

Ti = ⟨S,A, p, ri, I⟩.

To remove the necessity of repeatedly considering the same
safety constraints for every downstream task {Ti}Ni=1 training
phase, we aim to pretrain a task-agnostic repertoire of low-
level skills, i.e., latent conditioned skill policy π(a|s, z),
that inherently satisfies the safety constraints imposed by
I. By doing so, we can reuse such skill repertoire to solve
multiple downstream tasks Ti in a hierarchical manner, i.e.,
training high-level task policies ωi(z|s), without the need to
additionally consider safety constraints during its training.

For this purpose, we require the behaviors generated by
low-level latent-conditioned skill-policy π to satisfy the user-
defined safety constraints even when a random sequence of
skills (z0, z1, · · · , zT−1) ∼ p(τz) are temporally composed,
where p(τz) denotes the distribution of possible skill com-
position schemes.

Then, we introduce a problem of safety-aware skill discov-
ery, which can be formulated as a constrained optimization



Algorithm 1 Safety-Aware Skill Discovery

1: B ← initialize on-policy buffer
2: πθ ← initialize skill policy
3: qη ← initialize discovery reward models
4: Qsafe,ψ ← initialize safety critic
5: while not converged do
6: Sample skill seq. (z0, · · · , zT−1) ∼ p(τz)
7: Sample initial state s0 ∼ p(s0)
8: Collect transitions (zt, st, at, st+1, I(st))t=0:T

9: Update buffer B with collected transitions τ
10: Update skill discriminator qη via SGD (6)
11: Compute reward r(st, st+1, zt) for all transitions (8)
12: Update safety-critic Qsafe,ψ via SGD (4)
13: Update skill policy πθ via PPO (10)
14: Update λ via SGD (10)
15: end while

max
π

MI(z; s, s′)

s.t. Epπ(s)[I(s)] < ϵ
(9)

bounding the probability of safety constraint violation by ϵ
while maximizing the mutual-information based skill discov-
ery objective. ϵ determines the level of safety constraint; one
can impose stronger safety constraints by reducing ϵ, i.e.,
allowable probabibility of failure.

B. Algorithm

In this section, our main problem (9) is specifically in-
stantiated and solved by a) replacing the mutual information
objective with a tractable variational lower bound (5) and
b) modeling the probability of safety constraint violation
with safety-critic Qsafe (3). With a Lagrangian formulation
of the constraint, following surrogate objective can be used
to update skill policy πθ:

max
θ

min
λ≥0

E s,z∼B
a∼πθ(·|s,z)

[
Qπθ

skill(s, a, z)− λ(Q
πθ

safe,ψ(s, a)− ϵ)
]

(10)
where Qπθ

skill is the critic or advantage function for the
intrinsic reward (8).

Algorithm 1 provides more detailed overview of
the algorithm. We first sample random skill sequence
(z0, z1, · · · , zT−1) ∼ p(τz;n, T ) where the skill composition
schemes p(τz;n, T ) are designed to repeat the latent z for
multiple (n) timesteps before a new latent is sampled from
the prior p(z) and again repeated until it reaches the horizon
T . We collect state transitions from the on-policy rollouts as
well as the safety indicator I. At each timestep t, policy πθ
computes an action conditioned on the current state st and
skill zt. Using the collected transitions, we update the skill
discriminator network qη according to (6). Then, the skill
discovery reward rt = log qη(zt|st, st+1) is calculated using
the updated qη .

IV. EXPERIMENTS

In this section, we aim to answer the following questions:
(1) To what extent does SASD ensure safety while learning

Fig. 3: Reward and safety rate during skill discovery phase.

a diverse skill repertoire? (2) Is it safe to arbitrarily compose
the discovered skills? (3) Can we successfully solve a set of
contact-rich manipulation tasks with discovered skills?

All experiments are done in a simulated environment
using Isaac Gym [25]. During training, 16,000 environments
(Fig. 1) each equipped with a table, box, and 14-DoF dual-
armed robot AMBIDEX [26] are simulated in parallel with a
simulation frequency of 100Hz. During the training, Ttrain =
300 and ntrain = 100 is used (i.e., composing three skills)
to sample skill sequences from p(τz;n, T ). We aim to dis-
cover diverse bi-manual manipulation skills such as pushing,
grasping, flipping, rotating a box using both hands, while
ensuring a set of predefined safety constraints. We define
following states as unsafe in the following experiments: (1)
joint position exceeding 95% of its physical limits, (2) joint
velocity exceeding 10 rad/s, (3) excessive contact force of
100 N or more applied to the robot, (4) velocity of the robot
hands exceeding 2 m/s, (5) the object moving outside of the
robot’s reachable workspace. If any of the above constraints
is violated at least once during an episode, we call that
episode unsafe and the safety rate simply denotes the ratio of
unsafe episodes, i.e., estimate of 1− (probability of failure).

For the skill discovery reward, we use the formulation
proposed by Park et al. [4] which models the skill discrim-
inator qη(z|s, s′) ∼ N (ϕη(s

′)− ϕη(s), I) under 1-Lipschitz
constrained state encoder ϕη to better focus on meaningful
state differences: reward (8) can thus be calculated rt =
log qη(zt|st, st+1) = (ϕη(st+1) − ϕη(st))

⊺zt. Due to its
nature of objective, it encourages the agent to prefer skills
with larger traveled distances, learning more diverse and
dynamic skills.

A. Discovering Safe Manipulation Skills

In Figure 3, the returned discovery rewards and the
safety rates during the skill discovery phase are compared for
different values of the safety-critic threshold ϵ. As expected,
the safety rate increases as ϵ decreases. Also, it shows that
the respective safety rates converge fast at the early stage
of training. We believe that this is due in large part to
the vast amount of samples that can be collected from the
Isaac Gym simulator at each training epoch and also to the
growing diversity of exploratory experiences encouraged by
the skill discovery objective. It can also be observed that the



(a) Contact force (b) Object position

Fig. 4: Visualization of safety-related statistics.

Fig. 5: Different skill composition settings and safety rates.
Steps per skill indicates the number of repeated execution of
skill z

converged value of skill discovery reward had no significant
correlation with that of safety rate. However, we believe this
result would not generalize to different experimental condi-
tions, e.g., types of discovery objective, safety constraint and
system dynamics. That said, we would like to leave a more
comprehensive evaluation of the proposed SASD framework
as a future work.

B. Safety Evaluation of The Discovered Skills

We qualitatively analyze how skills discovered with
SASD satisfies individual safety constraints. To do so, we
analyze the safety constraints while executing random skill
sequences τz sampled from the same ptrain(τz) used during
training. As shown in Figure 4, skills discovered without
safety constraints (a) constantly pushes the object outside the
robot’s reachable workspace and (b) applies excessive forces
exceeding the predefined threshold. On the other hand, when
performing manipulation with skills discovered with SASD,
the object is gracefully manipulated without any excessive
forces applied to the robot, while at the same time remaining
within the reachable workspace.

We also analyze the effect of different skill composition
schemes on safety by changing n and T of p(τz;n, T ) from
the ones used during training. Since the different composition
schemes might lead to different state trajectories, it is unsure
whether the safety rate during the training phase is also
secured for all different n and T .

As the effect of n, Figure 5 shows the safety rates for skill
sequences sampled from p(τz;n, Ttrain) where n ̸= ntrain.
Almost constant safety rates are observed even with different

Fig. 6: Safety rates at time steps t > Ttrain exceeding the
horizon seen during skill discovery phase.

(a) Orientation matching

(b) Position matching

(c) Position and orientation matching

Fig. 7: Comparison of downstream task performances.

steps per skill n. Then, as the effect of T , Figure 6 shows
the safety rates for extended periods, i.e., τz ∼ p(τz;ntrain, T )
where T > Ttrain. Although the safety rate gradually drops as
the horizon increases, we note that it still maintains a high
safety rate over 90 percent.

These are in fact useful and necessary properties as the
high-level policy ω(z|s, g) might require higher or lower skill
resampling frequency and longer horizon than those used
during training.

C. Solving Contact-Rich Downstream Tasks

In this section, we show that our skills discovered by
SASD are not only safe, but also diverse and useful enough



to effectively solve various contact-rich downstream ma-
nipulation tasks. We consider three downstream tasks: a)
orientation-matching: reorienting the object to target orien-
tations, b) position-matching: moving the object to target
positions, and c) position-and-orientation-matching: moving
the object to target position and orientation at the same time.
For each task, we train a high-level task policy ω(z|s, g)
with PPO [27] using negative distance to the target state as
a reward.

We compare three methods: solving the tasks via hi-
erarchical RL using the skills discovered a) with safety
constraints (SASD) and b) without safety constraints (SD),
and c) solving the tasks from scratch by joint learning the
task policy and safety-critic (2) (SafeRL). In Figure 7, the
learning curves of each method are compared for the tasks.
The shading indicates the standard deviation of different
seeds, which is taken over the 16,000 parallel episodes (i.e.,
the variance of the mean). As mentioned earlier, comparing
various methods of the safe RL and the skill discovery is out
of scope as this paper mainly aims to study the synergies
between them.

Upon initial observation, it becomes apparent that SD
exhibits faster learning compared to SafeRL, despite the fact
that the safety rates remain almost constantly zero across all
tasks. On the other hand, SASD outperforms both methods
in terms of both performance and safety, and, remarkably, it
learns even faster than SD. At first glance, this result may
appear counter-intuitive; however, we hypothesize that this
is mainly due to the smaller action spaces resulting from the
imposition of safety constraints. Such constraints effectively
reduce the search space of the optimization process, lead-
ing to more efficient learning. This phenomenon has been
reported in previous studies [18], highlighting the beneficial
effect of safety considerations on learning outcomes.

Although our safety constraint formulation does not re-
quire any information regarding the downstream tasks, we
have observed that incorporating additional constraints that
are applicable to all downstream tasks can enhance learning
efficiency (at the cost of not being called “task-agnostic”).
To this end, the constraints on the contact force, end-effector
speed, joint position and velocity are universal and basic for
any robotic tasks, while the restrictions on the object position
represent an example of utilizing task-specific information
(which may not be relevant for other tasks such as object
throwing).

Secondly, we note that the curves’ variance is considerably
lower for SD and SASD compared to SafeRL. Although it
would be unfair to draw direct comparisons between SafeRL
and the pre-trained methods, it is noteworthy that SASD
exhibits the most stable and efficient learning for multi-
task applications, and is highly reproducible across different
seeds.

D. Implementation Details

Object pose, represented as 3D position and SO(3) rotation
matrix, is concatenated into a 12-dimensional vector as an
input to the skill discriminator qη . Object velocity and robot

joint states are additionally concatenated as an input to the
skill policy πθ, safety-critic Qsafe,ψ , and downstream task
policy ωi. For PPO training, we use clipped objective of
PPO with target KL 0.05 and clip ratio 0.2. In addition,
to mitigate the issue of sampling out-of-distribution skills
during downstream task planning [28], we model the latent
space as a hypersphere Z = {z : ∥z∥ = 1} where p(z)
is a uniform distribution on the surface of the sphere. We
sample from p(z) by normalizing z̃ sampled from a standard
Gaussian distribution,

z̃ ∼ N (0, I), z = z̃/∥z̃∥ (11)

Regarding the network size, both the skill policy and
skill discriminator comprise four hidden layers, each with
a layer size of 256. Meanwhile, the value function and
safety-critic consist of four hidden layers, each with a layer
size of 512. Notably, the tanh function is employed as the
output activation for the safety-critic. The skill discovery was
performed within 12 hours, utilizing a single A100 GPU.

V. CONCLUSION

In this paper, we introduce a novel skill discovery for-
mulation called safety-aware unsupervised skill discovery
(SASD) that aims to learn intrinsically safe and diverse
skills with minimal extrinsic supervision. We achieve this
by combining the mutual information-based skill discovery
and the safety-critic method. Through extensive simulated
experiments with our force-controlled dual arm robot AM-
BIDEX, we show that our method strongly ensures safety
without sacrificing much on the performance of unsuper-
vised skill dicovery. Moreover, our pretrained skill models
exhibit strong generalization performance across a variety
of initial states, skill composition schemes, and extended
execution horizons. Perhaps most significantly, when we
apply our method to hierarchical reinforcement learning for
downstream task training, it not only guarantees high levels
of safety throughout the entire training process, but also leads
to faster convergence. As a result, we believe that sim-to-real
transfer of skills learned using SASD represents a promising
direction for future research, as we envision that it could
ultimately free the user from accounting for safety to train
robot behaviors in the real-world.
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